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Fine-Grained Visual-Textual Representation Learning
Xiangteng He and Yuxin Peng

Abstract— Fine-grained visual categorization is to recognize
hundreds of subcategories belonging to the same basic-level
category, which is a highly challenging task due to the quite
subtle and local visual distinctions among similar subcategories.
Most existing methods generally learn part detectors to discover
discriminative regions for better categorization performance.
However, not all parts are beneficial and indispensable for visual
categorization, and the setting of part detector number heavily
relies on prior knowledge as well as experimental validation. As is
known to all, when we describe the object of an image via textual
descriptions, we mainly focus on the pivotal characteristics
and rarely pay attention to common characteristics as well as
the background areas. This is an involuntary transfer from
human visual attention to textual attention, which leads to
the fact that textual attention tells us how many and which
parts are discriminative and significant to categorization. So,
textual attention could help us to discover visual attention in the
image. Inspired by this, we propose a fine-grained visual-textual
representation learning (VTRL) approach, and its main contri-
butions are: 1) fine-grained visual-textual pattern mining devotes
to discovering discriminative visual-textual pairwise informa-
tion for boosting categorization performance through jointly
modeling vision and text with generative adversarial networks,
which automatically and adaptively discovers discriminative
parts and 2) VTRL jointly combines visual and textual infor-
mation, which preserves the intra-modality and inter-modality
information to generate complementary fine-grained repre-
sentation, as well as further improves categorization perfor-
mance. Comprehensive experimental results on the widely used
CUB-200-2011 and Oxford Flowers-102 datasets demonstrate
the effectiveness of our VTRL approach, which achieves the
best categorization accuracy compared with the state-of-the-art
methods.

Index Terms— Fine-grained visual categorization, fine-grained
visual-textual pattern mining, visual-textual representation
learning.

I. INTRODUCTION

F INE-GRAINED visual categorization aims to recognize
similar subcategories in the same basic-level category. It is

one of the most challenging and significant open problems in
multimedia and computer vision areas, which has achieved
great progress as well as attracted extensive attention of
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Fig. 1. Examples from CUB-200-2011 dataset [1]. Note that fine-grained
visual categorization is a technically challenging task even for humans
to recognize these subcategories, due to small variances among different
subcategories and large variances in the same subcategory.

academia and industry in recent years. The progress incarnates
in three aspects: (1) More fine-grained domains have been
covered, such as animal species [1], [2], plant breeds [3], [4],
car types [5] and aircraft models [6]. (2) Methodologies of
fine-grained visual categorization have achieved promising
performance in recent years [7]–[11], due to the application
of deep neural networks (DNNs). (3) Some information tech-
nology companies, such as Microsoft and Baidu, begin to
turn fine-grained visual categorization technologies into their
applications.1,2

Fine-grained visual categorization lies in the continuum
between basic-level visual categorization (e.g. object recogni-
tion) and identification of individuals (e.g. face recognition).
Its main challenges can be summarized as the following two
aspects: (1) Variances among similar subcategories are subtle
and local, because they belong to the same genus. (2) Vari-
ances in the same subcategory are large and diverse, due to
different poses and views, as well as for animals or plants also
because of different living environments and growth periods.
For example, as shown in Fig. 1, the images of “Artic Tern”
and “Caspian Tern” look similar in global appearance, but
the images of “Salty Backed Gull” look different in the pose,
view and feather color. So it is hard for a person without
professional knowledge to recognize them.

These subcategories can be distinguished by the subtle and
local variances of the discriminative parts. It is crucial for
fine-grained visual categorization to localize the object and

1https://www.microsoft.com/en-us/research/project/flowerreco-cn/
2http://image.baidu.com/?fr=shitu/
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its discriminative parts. Researchers generally adopt a two-
stage categorization pipeline: the first stage is to localize the
object or its discriminative parts, and the second is to extract
their features to categorize the subcategory. For example,
Zhang et al. [12] utilize R-CNN [13] with geometric con-
straints to detect object and its parts first, and then extract the
features of the object and its parts, finally train one-versus-all
linear SVMs for categorization. However, not all the parts are
beneficial and indispensable for fine-grained categorization.
The conclusive distinctions among subcategories generally
locate at a few specific parts, such as the red beak or the
black tail. So the categorization performance depends on the
number of part detectors and whether the detected parts are
discriminative or not. However, mainstream methods generally
set the detector number due to their prior knowledge or the
experimental validation, which is highly empirical and limited.
For example, when the number of part detectors applied in
the experiments increase from eight to fifteen, the perfor-
mance of fine-grained categorization declines, as reported
in [14]. Six part detectors are applied by Zhang et al. [15]
to achieve the best categorization accuracy. He and Peng [16]
apply two discriminative parts for fine-grained catego-
rization. They are limited in flexibility, and hard to
generalize.

Therefore, it is significant to automatically learn how many
and which parts really make sense to fine-grained visual
categorization. When human beings see two images of two
different subcategories, human visual attention mechanism
plays an important role in focusing on the pivotal distinctions
between them. Inspired by this, researchers begin to apply
human visual attention mechanism in their works, aiming
to find the most discriminative characteristics for catego-
rization. Xiao et al. [17] propose a two-level attention model
(TL Atten), in which object-level attention selects relevant
image proposals to a certain object, and part-level attention
selects relevant image proposals to the discriminative parts
of the object. Fu et al. [18] propose a recurrent attention
convolutional neural network (RA-CNN) to recursively learn
discriminative region attention and region-based feature rep-
resentation. These works simulate human visual attention
mechanism to find discriminative parts for categorization from
visual information.

Attention is the behavioral and cognitive process of selec-
tively concentrating on a discrete aspect of information,
whether deemed subjective or objective, while ignoring other
perceivable information [19]. As is known to all, when human
beings give the interpretation of the visual data by textual
descriptions, they tend to indicate how many and which
parts are distinguishing from other subcategories. These words
describing the part attributes are regarded as textual attention,
which generally appears frequently in the textual descriptions.
This is an involuntary transfer from human visual attention to
textual attention. In this transfer process, common character-
istics of object and background areas are ignored naturally.
Textual attention can be obtained by discovering the frequent
item sets in the textual descriptions, which point out the
discriminative parts of the subcategory. From Fig. 2, we can
see that the frequent item sets contain “red break”, which is

Fig. 2. Examples of visual and textual attentions. The images come from
CUB-200-2011 dataset [1], and text are collected by Reed et al. [20] through
Amazon Mechanical Turk (AMT) platform.

a discriminative characteristic that distinguishes “Heermann
Gull” from “Red Legged Kittiwake”.

Therefore, how to exactly relate textual attention to visual
attention and mine the discriminative parts are pivotal to
fine-grained visual categorization. This paper proposes a
fine-grained visual-textual representation learning (VTRL)
approach, and its main contributions are:

• Fine-grained visual-textual pattern mining devotes to
discovering discriminative visual-textual parts for cat-
egorization by jointly modeling vision and text with
generative adversarial networks (GANs). Different from
existing methods, the localized discriminative parts in this
paper could not only tell us how many and which parts
are significant for categorization, but also which attributes
of parts are distinguishing from other subcategories. The
part number is determined automatically and adaptively
by textual attention.

• Visual-textual representation learning is proposed to
combine visual and textual information. Visual stream
focuses on the locations of the discriminative parts,
while textual stream focuses on the discrimination of the
regions. It preserves the intra-modality and inter-modality
information to generate complementary fine-grained rep-
resentation, as well as further improves categorization
accuracy.

Our previous conference paper CVL [11] proposes a two-
stream model combining vision and language for learning
the fine-grained representation. Vision stream learns deep
representations from visual information and language stream
utilizes textual information to encode salient visual aspects
for distinguishing subcategories. The main differences between
the proposed VTRL approach and CVL can be summarized
as the following three aspects: (1) Our VTRL approach
employs textual pattern mining to localize textual attention for
exploiting the human visual attention transferred into textual
information, which indicates how many and which parts are
significant and indispensable for categorization. While CVL
directly utilizes the whole textual information, does not mine
fine-grained textual attention information. (2) Our VTRL
approach employs visual pattern mining based on discov-
ered textual patterns to localize discriminative parts, so that
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discriminative parts and objects are both exploited to learn
multi-grained and multi-level representations for boosting fine-
grained categorization. While CVL only exploits the objects,
which ignores the complementary and semantic fine-grained
clues provided by the discriminative parts. (3) Our VTRL
approach employs fine-grained visual-textual pattern mining
to discover the discriminative and significant visual-textual
pairwise information via jointly modeling vision and text with
GANs, which mines the correlation between textual and visual
attention. While CVL only combines vision and text, ignoring
to exploit their visual and textual attention, as well as their
correlation. Compared with state-of-the-art methods on two
widely-used fine-grained visual categorization datasets, our
VTRL approach achieves the best categorization accuracy.

The remainder of this paper is organized as follows:
We briefly review the related works in Section II. In Section III
our proposed VTRL approach is presented in detail. Then
Section IV reports the experimental results and analyses.
Finally, Section V concludes this paper.

II. RELATED WORK

In this section, we briefly review the related works of
fine-grained visual categorization, frequent pattern mining and
multi-modal analysis.

A. Fine-Grained Visual Categorization

Since the discriminative regions of image is cru-
cial for fine-grained visual categorization, most existing
methods [12], [17] first localize the discriminative regions of
image, such as the object and its parts, and then extract their
discriminative features for fine-grained categorization. Some
methods directly use the annotations of the object [21], [22]
and parts [23], [24] to localize the discriminative regions.
However, it is not available to obtain the annotations in
practical applications, some researchers begin to use the
annotations of the object and parts only in the training
phase. Zhang et al. [25] propose the Deformable Part-based
Model (DPM) to localize the discriminative regions with the
object and part annotations as the supervised information in the
training phase. Further more, PG Alignment [26] is proposed
to train part detectors only with object annotation, and localize
the discriminative parts in an automatic manner in the testing
phase.

Only using object annotation is still not promising in the
practical applications. Recently, some works [17], [27], [28]
are proposed to localize the discriminative regions in a
weakly-supervised manner, which means that neither object
nor part annotations are used in both training and testing
phases. Xiao et al. [17] combine the object and part level
attentions to select the discriminative image proposals, which
is the first work to localize the discriminative regions without
using object and part annotations. Yao et al. [27] also propose
to combine the two complementary object-level and part-level
visual descriptions for better performance. A neural activation
constellation (NAC) part model [29] is proposed to train part
detectors with constellation model. He and Peng [16] integrate
two spatial constraints to select more discriminative proposals

and achieve better categorization accuracy. The aforemen-
tioned methods mostly set the detector number due to the
prior knowledge or experimental validation, which is highly
limited in flexibility and difficult for generalizing to the other
domains. Therefore, we attempt to automatically learn how
many and which parts really make sense to categorization via
fine-grained visual-textual pattern mining.

B. Frequent Pattern Mining

Frequent patterns are itemsets, subsequences, or substruc-
tures that appear in a data set with frequency no less than
a user-specified threshold [30]. For example, diaper and beer
appear frequently together in sales data of a supermarket,
which is a frequent pattern. Frequent pattern mining is first
proposed by Agrawal et al. [31] for market basket analysis.
Agrawal et al. [32] propose Apriori algorithm to mine fre-
quent patterns in a large transaction database. For textual
mining, frequent patterns may be sequential patterns, frequent
itemsets, or multiple grams. While for visual mining, frequent
patterns may be middle-level feature representation or high-
level semantic representation. Han et al. [33] propose to mine
visual patterns using low-level features. Li et al. [34] propose
to combine CNN features and association rule mining for
discovering visual patterns. Li et al. [35] propose a novel
multi-modal pattern mining method, which takes textual pat-
tern and visual pattern into consideration at the same time.
In this paper, we first utilize Apriori algorithm to discover
the textual patterns, and then employ generative adversarial
networks (GANs) to mine the relationships between part pro-
posals and textual patterns for better categorization accuracy,
which discovers visual and textual patterns at the same time
as well as mines the intrinsic correlation between them.

C. Multi-Modal Analysis

Nowadays, multi-modal data, e.g. image, text, video and
audio, has been widely available on the Internet. They con-
tains different kinds of information, which are complementary
to help achieving comprehensive results in many real-world
applications. So it is significant to learn multi-modal rep-
resentation for boosting the signal-modal tasks [36], [37].
Canonical correlation analysis (CCA) [38] is proposed to learn
linear projection matrices, which project features of different
modalities into the common space and obtain the common
representation. It is widely used for modeling multi-modal
data [39]–[41]. Zhai et al. [76] propose the joint representation
learning method (JRL) to learn projection matrices considering
the semantic and correlation information. Due to the advances
of deep learning, deep learning based methods have been pro-
posed to boost the performance of multi-modal representation
learning. Ngiam et al. [42] propose the bimodal autoencoders
(Bimodal AE) to model multi-modal data via minimizing the
reconstruction error, and learn a shared representation across
modalities.

Recently, image and video captioning, which are types
of multi-modal analysis, have achieved great progress. Long
Short-Term Memory (LSTM) [43] and character-based con-
volutional networks [44] are widely used in image and
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Fig. 3. Overview of our VTRL approach.

video captioning. The architecture of Convolutional and
Recurrent Networks (CNN-RNN) is widely used in image
and video captioning, and achieves great performance. In this
paper, we apply the extension of Convolutional and Recurrent
Networks (CNN-RNN) to learn a visual semantic embedding.
In this paper, we bring the multi-modal representation learning
into fine-grained visual categorization to jointly modeling
vision and text for boosting the performance.

III. OUR VTRL APPROACH

A. Overview of Our VTRL Approach

Our approach is based on a very promising and interesting
intuition: textual descriptions can point out the discrimina-
tive characteristics of images, and provide complementary
information with visual information. Therefore, we propose
a fine-grained visual-textual representation learning (VTRL)
approach, which takes the advantages of visual and textual
information jointly as well as exploits the intrinsic correlation
between them. Fig. 3 shows our VTRL approach. First,
we conduct fine-grained visual-textual pattern mining to dis-
cover the discriminative visual-textual parts as shown in Fig. 4.
Then, we localize the object region of image to boost the visual
analysis. Finally, we propose a visual-textual representation
learning approach to jointly model visual and textual streams
for better categorization accuracy.

B. Fine-Grained Visual-Textual Pattern Mining

Since human visual attention is described into the form of
textual descriptions, we first conduct textual pattern mining to
discover the textual attention, which indicates the distinguish-
ing part attributes from other subcategories, such as the shape,
size and color of the part. Then, we conduct visual pattern
mining to localize the discriminative parts corresponding to
the textual patterns discovered by textual pattern mining. The
overview of our fine-grained visual-textual pattern mining

Fig. 4. Overview of our fine-grained visual-textual pattern mining
approach. {0, 1} denotes the output of the discriminator in GANs, which
indicates whether the input part proposal meets the input textual pattern.

approach is shown in Fig. 4. In the following paragraphs,
we describe the fine-grained visual-textual pattern mining
approach from three aspects: 1) definition of pattern mining,
2) textual pattern mining and 3) visual pattern mining via
GANs.

1) Definition of Pattern Mining: We first introduce the basic
definitions for pattern mining. Assume that there is a set of
n items, which is denoted as X = {x1, x2, . . . , xn}, and the
transaction T is a subset of X , i.e. T ⊆ X . We also define
a transaction database D = {T1, T2, . . . , TK } that contains K
transactions. Our goal is to discover a particular subset T ∗
of transactions database X , which can predict the presence of
some target item y ∈ Ty , and T ∗ ⊂ Ty as well as y ∩ T ∗ = ∅.
T ∗ refers to frequent itemset in pattern mining literature. The
support of T ∗ denotes how often T ∗ appears in D and its
definition is as follow:

supp(T ∗) = |{Ty|T ∗ ⊆ Ty, Ty ∈ D}|
K

(1)

An association rule T ∗ → y defines a relationship between
T ∗ and a certain item y. Therefore, we aim to find patterns
that appear in a transaction there is a high likelihood that y.
We define the confidence as follow:

con f (T ∗ → y) = supp(T ∗ ∪ y)

supp(T ∗) (2)

2) Textual Pattern Mining: In this paper, we devote to
discovering textual patterns, which contain the human visual
attention information. First, we remove stop words and punc-
tuations from each textual description. Then we select the
words, which appear in at least 10 textual descriptions in
our dataset. Build a vocabulary with these selected words,
which is used for generating transactions. It is noted that
there are no duplicate words in the vocabulary. In order to
generate transaction for each textual description, we map
each word back to its corresponding word in the vocabulary,
then include that corresponding word index in the transaction.



524 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 30, NO. 2, FEBRUARY 2020

After obtaining the transactions, we perform association rule
mining to find the words that frequently appear in textual
descriptions, which also means that these words can represent
the characteristics of this subcategory. Specifically, we utilize
the Apriori algorithm [32] to find a set of patterns P through
association rule mining. Each pattern p ∈ P must satisfy the
following criteria:

supp(p) > suppmin (3)

con f (p → c) > con fmin (4)

where suppmin and con fmin are thresholds for the support
value and confidence value respectively, and c means the
image-level subcategory label. After association rule mining,
each discovered pattern p contains a set of words.

We want to find some patterns that point out the discrimi-
native parts of the image, which have the semantic meaning.
Therefore, we conduct distance constraint on association rule
mining as follow:

dis(wi , w j ) < dismin (5)

where wi and w j mean the i -th and j -th words in the same
textual description, and dis(·) means the interval between the
i -th and j -th words. The distance function ensures that the
discovered patterns have the semantic meaning. The actual
threshold in distance function is set to 4 in the experiments,
which is set by the cross-validation method following [12].
Finally, we discover a set of patterns P , i.e. textual attention
in the textual descriptions, which contains the information of
human visual attention.

3) Visual Pattern Mining via GANs: After obtaining the
textual attention, we devote to mining the relationship between
visual and textual attention, i.e. localize the discriminative
parts of images via the guidance of textual attention. Due
to the great progress made by generative adversarial net-
works (GANs), which can generate images based on textual
information. In this paper, we employ GANs to break through
the gap between visual and textual information, and local-
ize the discriminative parts corresponding to the discovered
textual patterns. Specifically, the network architecture follows
GAN-CLS [45]. The original training images and their anno-
tated textual descriptions are used to train the GAN-CLS
model. We take the alternating strategy to update the generator
and discriminator networks, and use ADAM solver [46] to
train the model. The training settings, such as learning rate
and momentum, are configured following GAN-CLS [45].

It is noted that part proposals and textual patterns are
not used to train the GAN-CLS model, as it is unavail-
able to obtain their matching labels. Reed et al. [20] point
out that the text embedding based on textual descriptions
covers the visual attributes, i.e. textual patterns, such as
shape, size and color of the part. GAN-CLS follows [20] to
obtain a visually-discriminative vector representation of text
descriptions, by using deep convolutional and recurrent text
encoders that learn a correspondence function with images.
Even using images and textual descriptions in the training
phase, GAN-CLS can still learn the correlation between the
part proposals and textual patterns. As described in GAN-CLS,

the generator has learned to generate plausible images, and
also learned to align them with the conditioning information,
and likewise the discriminator must learn to evaluate whether
samples from generator meet this conditioning constraint.
So we first train GAN-CLS on the datasets in our paper,
and then apply the discriminator in GAN-CLS to select the
corresponding part proposals for the specific textual patterns,
where we take one part proposal as the sample input, and
one textual pattern as the conditioning constraint input. The
selected part proposals contain discriminative information that
helps to distinguish similar subcategories. In the following
paragraphs, we introduce the visual pattern mining approach
in details.

First, for each image we perform bottom-up process to
generate part proposals. In this paper, we utilize selective
search method [47] to generate 1000 part proposals for each
image. Then we take the part proposals and discovered textual
patterns as the inputs of discriminator network, to relate
the discovered textual patterns with the corresponding part
proposals. For each part proposal, discriminator network out-
puts a score vector that refers to the degree of correlations
between part proposal and textual patterns. We select the part
proposal with highest score for each textual pattern, which is
one of the most discriminative parts for categorization. They
will be utilized as the inputs of visual-textual representation
learning.

C. Object Localization

For better categorization performance, we apply an auto-
matic object localization method based on CAM [48] to
localize the object in a weakly-supervised manner, which
means that neither object nor part annotations are used in both
training and testing phases. Through CAM, we can generate
a subcategory activation map Mc for each subcategory c,
in which the spatial value is calculated as follow:

Mc(x, y) =
∑

k

wc
k fk(x, y) (6)

where fk(x, y) denotes the activation of unit k in the last con-
volutional layer at spatial location (x, y), and wc

k is the weight
corresponding to subcategory c for unit k. The subcategory
label information is not available in testing phase, so we set
subcategory c by the predicted subcategory. After obtaining
the activation map for each image, we conduct OTSU algo-
rithm [49] to binarize the image and take the bounding box
that covers the largest connected area as the localization of
object. The localized object is utilized as the inputs of visual-
textual representation learning along with the localized dis-
criminative parts via fine-grained visual-textual pattern mining.
Examples of object localization results are shown in Fig. 5.
It is noted that we use a variant of VGGNet [50] as CAM
following [48]. In order to get a higher spatial resolution,
the layers after conv5_3 are removed, resulting in a mapping
resolution of 14 × 14. Besides, a convolutional layer of size
3 × 3, stride 1, pad 1 with 1024 neurons is added, followed
by a global average pooling layer and a softmax layer.
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Fig. 5. Examples of object localization results in this paper. The red
rectangles indicate the ground truth object annotations, i.e. bounding boxes
of objects, and the yellow rectangles indicate the object regions localized by
our approach.

D. Visual-Textual Representation Learning

Since visual content and textual descriptions provide com-
plementary information, we jointly model them with a
two-stream model for learning visual-textual representations to
boost the categorization performance. The two-stream model
consists of: 1) visual stream and 2) textual stream.

1) Visual Stream: We apply CNN model, e.g. VGGNet [50]
in our experiments, as the visual categorization function f .
The CNN model is pre-trained on the ImageNet 1 K
dataset [51], and then fine-tuned on the fine-grained visual
categorization dataset.

For a given image I , we first conduct object localization
and fine-grained visual-textual pattern mining respectively to
obtain the object b and its n discriminative parts Pa =
{Pa1, Pa2, . . . , Pan}. Then the object and discriminative parts
are cropped from the original image, and saved as images
Ib and IPa = {IPa1, IPa2 , . . . , IPan }. We feed the original
image I and its object image Ib as well as its part images
IPa = {IPa1, IPa2 , . . . , IPan } to the CNN model to obtain the
predicted visual scores. For the part images, we calculate their
mean value as the final part prediction. Finally, we calculate
the weighted mean of original prediction, object prediction and
part prediction as the final visual prediction.

2) Textual Stream: In textual stream, we aim to measure
the similarity between visual and textual information. We first
apply the deep structured joint embedding method [20] to
jointly embed vision (i.e. images) and text (i.e. natural lan-
guage descriptions for images), which learns a compatibility
function of vision and text.

We define the training data as D = (vn, tn, yn), n =
1, . . . , N , where v ∈ V and t ∈ T denote the vision and text,
and y ∈ Y denotes their subcategory labels. Then we apply the

empirical risk to learn the visual and textual classifier functions
fv : V → Y and ft : T → Y as follows:

1

N

N∑

n=1

�(yn, fv (vn)) + �(yn, ft (tn)) (7)

where � : y × y → R is the 0-1 loss and

fv (v) = arg max
y∈Y

Et∼T (y)[F(v, t)] (8)

ft (t) = arg max
y∈Y

Ev∼V (y)[F(v, t)] (9)

The compatibility function F : V ×Y → R is defined as the
inner product of features from the learnable encoder functions
as follows:

F(v, t) = θ(v)T φ(t) (10)

where θ(v) is the visual encoder, and φ(t) is the textual
encoder. The visual and textual encoders are implemented
by GoogleNet [52] and Convolutional Recurrent Net (CNN-
RNN) [20] respectively in our approach. The CNN-RNN
model consist of a mid-level temporal CNN hidden layer and
a recurrent network. The outputs of the hidden unit over the
textual sequence is averaged as the textural features. Then the
textual predicted score is defined as a linear accumulation of
evidence for compatibility with the image which needs to be
recognized.

E. Training Process

In this subsection, we summarize our training process.
We train three models for original images, objects and parts
respectively. Their detailed training processes are shown in
Algorithm 1.

F. Final Prediction

For a given image I , we obtain the visual predicted score
from the view of the visual information, and obtain the
textual predicted score via measuring the visual and textual
information with the shared compatibility function. Due to
the fact that joint learning of visual and textual information
preserves the intra-modality and inter-modality information to
generate complementary information, we fuse the visual and
textual predicted results as the final prediction via the follow
equation:

f (I ) = fv (v) + β ∗ ft (t) (11)

where fv (v) and ft (t) are the visual and textual predicted
scores as mentioned above. β is selected by the cross-
validation method following [12], and its value is 2 in our
experiments on the two fine-grained datasets.

IV. EXPERIMENTS

A. Datasets

This subsection presents two fine-grained visual cate-
gorization datasets adopted in the experiments, including
CUB-200-2011 and Oxford Flowers-102 datasets, and their
detailed information is described as follows:
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Fig. 6. Some examples of vision and text in CUB-200-2011 dataset and Oxford Flowers-102 dataset.

Algorithm 1 Training Process
Input: The training images I and their corresponding textual

descriptions T .
Output: The model M .
1: Set M = {Mori , Mobject , Mpart }
2: Use I to fine-tune the CNN model, which is pre-trained on

ImageNet, obtaining the model Mori

3: Conduct object localization as described in Section III-C,
to get the object regions b of I

4: Crop b from I and save as images Ib

5: Use Ib to fine-tune Mori , obtaining the model Mobject

6: Follow [45] to train GAN-CLS using minibatch SGD with
I and T as pairwise constraints

7: Conduct selective search [47] on each image to get part
proposals S

8: Conduct textual pattern mining to obtain the discriminative
textual patterns P for each subcategory

9: for k = 1, . . . , n; j = 1, . . . , d do
10: Take k-th part proposal Sk and j -th textual pattern Pj as

the input of the generator G of GAN-CLS
11: Perform a feed-forward pass, and output the correlation

score of Sk and Pj

12: For Pj we select one part proposal with the highest
correlation score

13: end for
14: Use the selected part proposals to fine-tune Mobject , obtain-

ing the model Mpart

15: return M .

• CUB-200-2011. It is the most widely-used dataset
for fine-grained visual categorization task. The visual
information comes from the original dataset of CUB-
200-2011 [1]. It contains 11,788 images of 200 sub-
categories belonging to birds, 5,994 for training and
5,794 for testing. Each image has detailed annotations:

1 subcategory label, 15 part locations, 312 binary
attributes and 1 bounding box. The textual information
comes from [20]. They expand the CUB-200-2011 dataset
by collecting fine-grained natural language descriptions.
Ten single-sentence descriptions are collected for each
image, as shown in Fig. 6. The natural language descrip-
tions are collected through the Amazon Mechanical
Turk (AMT) platform, and are required at least 10 words,
without any information of subcategories and actions.

• Oxford Flowers-102. Same with CUB-200-2011 dataset,
textual information comes from [20], and visual informa-
tion comes from the original dataset of Oxford Flowers-
102 [4], as shown in Fig. 6. It has 8,189 images
of 102 subcategories belonging to flowers, 1,020 for
training, 1,020 for validation and 6,149 for testing. Each
subcategory consists of between 40 and 258 images.

B. Evaluation Metric

Accuracy is adopted to comprehensively evaluate the cat-
egorization performances of our VTRL approach as well as
compared state-of-the-art methods, which is widely used in
fine-grained visual categorization [8], [12], and its definition
is as follow:

Accuracy = Ra

R
(12)

where R denotes the number of images in testing set, and Ra

denotes the number of images that are correctly classified.

C. Implementation Details

1) Fine-Grained Visual-Textual Pattern Mining: First,
we calculate the frequency of each word in the textual
descriptions for each subcategory, and select the top-10 words
as keywords, and then discover textual frequent patterns via
Apriori algorithm [32]. It is noted that we conduct textual
pattern mining for each subcategory respectively rather than
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Fig. 7. Examples of the matching between textual patterns and visual patterns in our fine-grained visual-textual pattern mining approach.

all subcategories together, which guarantees that the frequent
textual patterns tend to be the descriptions of the discriminative
parts, such as “white head”, “black wings” and “long bill”.
Second, we conduct selective search [47] on each image to
generate part proposals. Finally, we employ discriminator
network to relate textual patterns to part proposals, then select
the proposal with highest score as the discriminative part
for each textual pattern. For each subcategory, the number
of parts is set automatically and adaptively based on the
discovered textual patterns. Fig. 7 shows some matching
examples between textual pattern and visual pattern, which
are the discriminative characteristics of the subcategory, such
as “long&brown neck”, “yellow belly” and “black beak”.

2) Visual-Textual Representation Learning: For textual
stream, we apply CNN-RNN [20] as the text encoder to
learn a correspondence function with images. In the training
phase, we follow Reed et al. [20]. For visual stream, we apply
the widely-used model 19-layer VGGNet [50] with batch
normalization. The model is first pre-trained on ImageNet
1K dataset, and then fine-tuned on the fine-grained visual
categorization dataset. Inspired by the strategy adopted by
Xiao et al. [17], we utilize the pre-trained CNN model as
a filter net to select proposals relevant to the object from
the generated image proposals by selective search method.
We further fine-tune the pre-trained model with the selected
image proposals.

D. Comparisons With State-of-the-Art Methods

In this subsection, we present the experimental results of our
proposed approach as well as all the compared state-of-the-
art methods, as shown in Tables I and II, which demonstrate
the effectiveness of our proposed VTRL approach. As shown
in Table I, our proposed VTRL approach improves the cat-
egorization accuracy from 85.65% to 86.31% on CUB-200-
2011 dataset. We divide the compared methods into three
groups due to the usage of object and part annotations in these
methods.

• Neither object nor part annotations are used. Nowadays,
researchers focus on how to get better categorization

accuracy under the weakly-supervised setting, which
means neither object nor part annotations are used. Most
of these methods utilize the attention property of convolu-
tional neural layers to localize the discriminative parts of
object for better accuracy, such as Fused CN-Nets [28],
RA-CNN [18], PNA [8], TSC [16] and TL Atten [17].
They simulate human visual attention mechanism only
from visual information. In our approach, we exploit
visual and textual attention simultaneously as well as
mine the complementary information between them,
which make our proposed approach more effective and
obtain a 0.66% higher accuracy than the best performing
result of Fused CN-Nets [28]. We also compare with our
previous conference work, i.e. CVL [11]. We can see
that our VTRL approach brings improvements than CVL
by 0.76% and 0.67% respectively on CUB-200-2011 and
Oxford Flowers-102 datasets. It is mainly because that
the VTRL approach exploits the textual attention to
localize discriminative regions, while CVL directly uses
the whole textual descriptions and does not consider the
discriminative regions in the images.

• Only one of object and part annotations is used. These
methods utilize object annotation (i.e. bounding box) to
train an object detector or learn part detectors, which are
to learn more representative features for categorization.
In our approach, we utilize CAM [48] to automatically
localize the object region of image, which avoids using
object annotation. The result of object localization can
be seen in Fig. 2. Even using object annotation, these
methods achieve lower accuracies than our proposed
VTRL approach.

• Both object and part annotations are used. In order
to obtain better categorization accuracy, some methods
utilize both object and part annotations at training phase
as well as testing phase. However, these annotations are
heavy labor-consuming. In our approach, we get object
region and discriminative parts automatically via object
localization and fine-grained visual-textual pattern mining
respectively without using any annotations. We promote
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TABLE I

COMPARISONS WITH STATE-OF-THE-ART METHODS ON CUB-200-2011, SORTED BY AMOUNT OF ANNOTATION USED. “BBOX” AND “PARTS” INDICATE
THE OBJECT AND PART ANNOTATIONS (I.E. BOUNDING BOX AND PARTS LOCATIONS) PROVIDED BY THE DATASET

TABLE II

COMPARISONS WITH STATE-OF-THE-ART METHODS
ON OXFORD FLOWERS-102

the categorization performance through discovering the
discriminative and representative object and its parts.

Besides, categorization results on Oxford Flowers-
102 dataset are shown in Table II, and also have the similar
trend as CUB-200-2011 dataset, while our proposed VTRL
approach still keeps the best.

E. Effects of Components in Our VTRL Approach

In this subsection, we conduct two baseline experiments
to verify the separate contribution of each component in our
proposed VTRL approach. Tables III to V show the accuracies
of our proposed VTRL approach as well as the baseline

TABLE III

EFFECTS OF FINE-GRAINED PATTERN MINING AND OBJECT
LOCALIZATION FOR VISUAL STREAM

TABLE IV

EFFECTS OF DIFFERENT COMPONENTS OF OUR PROPOSED
APPROACH ON CUB-200-2011

approaches on CUB-200-2011 dataset at the following two
aspects.

1) Effects of Fine-Grained Visual-Textual Pattern Mining
and Object Localization: In our VTRL approach, fine-grained
visual-textual pattern mining and object localization gener-
ate discriminative parts and object for promoting the cate-
gorization accuracy. They make sense to the visual stream
and then further impact whole approach. Tables III and IV
show the effects of fine-grained visual-textual pattern mining
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TABLE V

EFFECTS OF DIFFERENT COMPONENTS OF OUR PROPOSED
APPROACH ON CUB-200-2011

Fig. 8. Some results of the textual stream.

and object localization to visual stream and our proposed
VTRL approach respectively. In the tables, “object” means
that object localization is conducted, and “parts” means that
fine-grained visual-textual pattern mining is employed. We can
observe that considering object localization can achieve better
categorization accuracy than considering fine-grained visual-
textual pattern mining. This is because that objects contain
the global and local features simultaneously, while discrim-
inative parts focus subtle and local characteristics. However,
jointly considering object localization and fine-grained visual-
textual pattern mining can further improve the categorization
accuracy.

Fine-grained visual-textual pattern mining aims to select the
part proposals that corresponding to the discovered textual
patterns. The relations between part proposals and textual
patterns ensure the discrimination and representativeness of
selected parts. Some examples of discovered visual-textual
patterns are shown in Fig. 7.

2) Effectiveness of Visual-Textual Representation Learning:
We also present the baseline experiment to verify the effec-
tiveness of visual-textual representation learning. The results
are shown in Table V, where “VTRL-textual” means textual
stream, “VTRL-visual” means visual stream and “VTRL(only
original image” means only a fine-tuned CNN model is used.
We can observe that categorization result of textual stream is
promising. From the first line of each row in Fig. 8, we can find
that textual description with the highest score always points
out the discriminative characteristics of the object, as the
red words shows. Combining visual and textual information
can further achieve more accurate categorization result, which
demonstrates that the two types of information are comple-
mentary: visual information focuses on the global and local
features, and textual information further points the importance
of these features. Fig. 9 shows some example results where the
textual and visual streams are complementary. Visual stream
is effective for dealing with those images, which have few

Fig. 9. Some example results where the textual and visual streams are
complementary. The left two images are rightly categorized by textual stream,
but wrongly categorized by visual stream. The right two images are just the
opposite.

discriminative characteristics. Humans can only describe them
in a rough way, but cannot describe them in detail, which leads
that the textual information carries less useful information to
distinguish it from other subcategories. Examples are shown
as the right two images. Textual stream is effective for dealing
with those images, whose foreground and background are
hard to be distinguished by visual stream. But they can be
described in details by text, which carries the information
of the discriminative characteristics and be helpful for the
categorization. Examples are shown as the left two images.

Besides, we also compare our VTRL approach with
method based on both textual and visual attention, such as
Co-attention [75]. It only achieves the accuracy of 73.90%,
which is lower than our VTRL approach. It is mainly because
that our VTRL approach discovers the fine-grained visual-
textual patterns, which are key hints to the fine-grained
categorization.

From the above baseline results, the separate contribution of
each component in our proposed VTRL approach can be ver-
ified. First, object localization and fine-grained pattern mining
discover the discriminative and representative information of
image via visual-textual attention. Second, the complementar-
ity between visual and textual information is fully captured by
visual-textual representation learning.

V. CONCLUSIONS

In this paper, the fine-grained visual-textual representa-
tion learning approach has been proposed. Based on textual
attention, we employ fine-grained visual-textual pattern min-
ing to discover discriminative information for categorization
through jointly modeling vision and text with GANs. Then,
visual-textual representation learning jointly considers visual
and textual information, which preserves the intra-modality
and inter-modality information to generate complementary
fine-grained representation, and further improve categorization
performance. Experimental results on two widely-used fine-
grained visual categorization datasets demonstrate the superi-
ority of our approach compared with state-of-the-art methods.

As for the future work, we will focus on the following two
aspects: First, we will attempt to extend the current two-stream
framework into an end-to-end framework for simplifying the
process. Second, we will exploit exact and effective methods
on relating textual attention and visual attention for more
accurate discriminative parts localization as well as better
categorization performance.
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